ER DEPARTMENT DATA ASSESSMENT SUMMARY REPORT FORM | | ch No. <u>9006L596</u> | Y : 191. | | 0.007 | |------|--|------------------------|---|---------------------| | | oratory Roy F. Weston - | Lionville | • | | | | W # 10/86 (Rev. 2/88) | | Reviewer Org. <u>TechL</u> | aw. Inc. | | Sam | ple Numbers <u>SW095W(</u> | <u>053090AAA, SWO</u> | 95W053090TAA | | | | | | | | | | | Data A | ssessment Summary | | | | | VOA | Comments | | | 1. | Holding Times | V | | | | | · | | | | | 2. | GC/MS Tune/Instr. Perf. | <u> </u> | | | | 3. | Calibrations | A | Action Items 1.2; Comments 1.2 | | | 4. | Blanks | A | Action Item 3 | | | 5. | Surmagatas | V | | | | 3. | Surrogates | | | | | 6. | Matrix Spike/Dup. | V | | | | 7. | Other QC | <u> </u> | Comments 3.4 | | | 8. | Internal Standards | <u>v</u> | | | | 9. | Compound Identification | <u> </u> | | | | 10. | System Performance | V | | | | 11. | Overall Assessment | A | Data acceptable with qualifications. | | | | V = Data had no problems. | | | | | | A = Data acceptable but qualified du | e to problems. | | | | | R = Data rejected.X = Problems, but do not affect data. | | | | | | | | | | | Data | Quality: Data contained in | this batch were review | ed and found to be acceptable with qualific | ations. Acceptable. | | | | | impacted by the "Action Items" listed below | | | (Ref | er to attached Data Summary Ta | ibles.) | | | | | | | RETURNED FOR GLASSIFICATION/U | Cili | | | | | By Dellansq | unin) | 1 A-DU04-000074 6L596/voa | Action Items: 1) In the initial calibration on 5/30/90, Trichloroethene's and Acetone's %KSD exceeded 30%. | |--| | Therefore the positive result for Trichloroethene in sample SW095W053090AAA is estimated (J). The positive | | result for Acetone in this sample would be estimated (J) if not for blank contamination. See Action Item 3. | | 2) Due to a large interfering peak, it appears that manual quantitation of Chloromethane, Vinyl Chloride, | | Bromomethane, and Chloroethane in all calibration standards was performed. However, on the quantitation report | | submitted for the 150 ppb standard in the initial calibration the raw data RRF values did not agree with the RRFs on | | Form 6A. Apparently, the RRFs on Form 6A were manually quantitated, and the raw data was for the | | unmanipulated values. Consequently, the calibrations of these compounds are questionable and, therefore, all | | non-detected results for them are estimated and undetected (UJ) in all samples. | | 3) As a result of method blank contamination, the positive Acetone result in sample SW095W053090AAA | | and the positive Methylene Chloride results in both samples are estimated and undetected (UI) according to the | | Functional Guidelines 10x rule. | | | | | | Comments: 1) In the initial and continuing calibrations, several compounds %RSDs or %Ds exceeded criteria. | | No action is necessary because there were no positive results for these compounds, | | 2) It appears that Acetone was manually quantitated in the 150 ppb standard of the initial calibration because | | the RRF calculated from the raw data does not match the RRF for Acetone on Form 6A. Furthermore, Acetone was | | manually quantitated in the 200 ppb standard and in the continuing calibration. Although the reported RRF was not | | reproducible, no action is taken because the RRF on Form 6A is assumed to be correct. | | 3) Various parts of the batch were illegible due to poor copying quality. | | 4) The Chain-of-Custody (COC) reported that VOA samples were leaking upon arrival; however, because of | | poor copying quality on the COC, it is undeterminable which sample was affected. | | Note: Data Summary Tables are attached. | | Willia T Fee 7/17/90 Reviewer Signature Date | | Reviewer Signature Date | 9006L596 Solar Ponds TABLE #: SITE NAME: CLP VOLATILE ORGANIC ANALYSIS: Low Water ANALYTICAL RESULTS (ppb) Page 1 of 1 | State Stat | | | | | | | | | | | |--|----------------------------------|--------------|---------------------|-----------------------|------------|---|--|-------------------------|----|--| | 8>< | | 1 | | | 901AA | | | | | | | 8>< | | - | | | 06/06/50 | | | | | | | 8 > < | | ٦ | | | 06/04/90 | | | | | | | 8>< | | | | | | | | | | | | 8>< | Į OI | CROL
(mp) | 2 | 2 | 2 | | | | | | | 8 > < | | 2 | | 3 | 10 LLI A | | | | | | | 8 > < | Bromomethane | 9 | | 3 | 10 W A | | | | | | | 8 > < | Vinyl chloride | 9 | | 3 | 10 W A | | | | | | | 8 > < | Chloroethane | 9 | | 10 W A | 4 M 01 | | | | | | | 8 > < | Methylene chloride | 2 | | 5 W A | 5 W A | | | | | | | 8 > < | Acetone | 9 | | 10 W A | 10 U A | | | | | | | 8 > < | Carbon disulfide | 5 | | 5 U V | 5 U V | | | | | | | 8 > < | 1,1-Dichloroethene | S | | 2 U V | 1 | | | | | | | 8 > < | 1,1-Dichloroethane | 2 | | 5 | 1 | | | | | | | 8 > < | 1,2-Dichloroethene (Total) | 2 | | 5 | 1 | | | | | | | 8 > < | Chloroform | 9 | | ٦ | | | | | | | | 8 > < | 1,2-Dichloroethane | 2 | | ב | <u> </u> | | | | | | | 8 > < | 2-Butanone | 10 | | b | | | | | | | | 8 > < | ,1,1-Trichloroethane | 2 | | n | | - | | | | | | 8 > < | arbon tetrachloride | 2 | | | | | | | | | | 8 > < | inyl acetate | 유 | | | | | | | | | | 8 > < | romodichloromethane | 5 | | | _ ! | | | | | | | 8 > < | 2-Dichloropropane | 2 | | | _ | | | | | | | 8 > < | is-1,3-Dichloropropene | 2 | | ٥ | | | | | | | | 8 > < | richloroethene | ည | | ٦ | | | | | | | | 8 > < | ibromochloromethane | 2 | | 5 | 1 | | | | | | | 8 > < | ,1,2-Trichioroethane | 2 | | ᅴ | | | | | | | | 8 > < | enzene | C) | | ٥ | | | | | | | | 8 > < | ans-1,3-Dichloropropene | 2 | | 5 | - 1 | | | | | | | 8 > < | romotorm | 4 | | - : | - 1 | | | | | | | 8 > < | -Metnyl-2-pertanone | 2 | | 5 | 5 : | | | | | | | 8 > < | Hexanone | | | 5 | 5 | | | | | | | 8 > < | A D O Total lend | 7 4 | | ╸ | 5 : | | | | | | | 8 > < | I Z.Z. I eucachicoeuraire | 0 1 | | ء <u>-</u> | - | | | | | | | 8 > < | hlombonzoo | 2 4 | | - - | | | | | | | | 8 > < | thytheorem | 2 4 | | , = | , = | | | | | | | 8 > < | tymene | 2 42 | | , = | , = | | | | | | | 8 > < | ylenes (Total) | 5 | | دا، | , _ | | | | | | | _ 8 > < | otal Organic | \mid | | | | | | | | | | 8>< | concentration (ppb) | | 10 | 80 | ı | | | | | | | | | detecte | d above the Requ | ired Quantitation Li | nit. | | | ualitier | | | | ************************************ | | | noris roenimied cun | ing the quality conti | ol review. | | | | | | | | Exceeds calibration range, dutte | & reark | ayze. | | | | | able with qualification | 92 | | U Indicates the compound was not detected above the Required Quantitation Limit. 6L596/temp6 Acceptable with qualifications Rejected J Quantitation is approximate due to limitations identified during the quality control review. Exceeds calibration range, dilute & reanalyze. CROL. Contract Required Quantitation Limit in Micrograms per Liter (ug/L), Parts per billion (ppb). | Secretarion (1967) Secretarion (1967) MANA 1982 ANALYSES ANALYSE ANALYSES ANALYS | WESTO | WESTON Analytics Use Only | Cust | L bo | rans | sfer Re | cord | //Lab | Custody Transfer Record/Lab Work Request | quest | | WASSIEN | |--|----------------------------|---------------------------|--------------|------------|-----------------------|----------|------------|--|--|--------------|----------------------------|---| | Column C | | Ja 576 | · | F 5 | igerators
De Conte | | 1 | | | | | WESTON Analytics | | Column C | Work Order | 2029- | 1-0000 | 를

 | J.W. | | |] | | | | Samples Were: | | Month Mont | Date Rec'd. | 04/19 | 10/90 | <u>م</u> | ervative | Noti | 级 | | | | | Delivered | | Succidence Washington Succidence Washington Succidence Suc | RFW Contac
Client Conta | 9 | | REG(| LYSES | Non | | Si.Si | - | | | NOTES:
2 Ambient op.Chilled | | SANOTE NOTE: SANO | WA Use Only
Lab ID | | | Meetri | \vdash | 8 | THE STREET | • | 2 | | | NOTE | | Section No. 1975: Section No. 1976: | M | 52095 NO | | 3; | 5/30 | | × | | | | | 3 Heceived Broken/
Leaking (Improperty | | NOTES: | 203 | 540954005 | | 3 3 | 573 | 1 | í | - | | | | Z
Q | | A - North Figure 1 - Entrope Present of the part | | | | | | 4 | 1 | _ | V V | 81.65 | | NOTES:
SEE SIDE | | W. Water DS - Drum Soulds X - Other Special Instructions: The Figh William Special Instructions: The Behnquished by Park Inne Heart Office of Sample X - Other Special Instructions: The Behnquished by Received by Date Inne Office of Sample X - Other X - Other Sample X - Other O | | | | | | | | | | | | 4 Properly Preserved | | W. Wear DS - Drum Soulds X - Other Special Instructions: M. Wear DS - Drum Soulds X - Other Special Instructions: M. Wear DS - Drum Soulds X - Other Special Instructions: M. Wear DS - Drum Soulds X - Other Special Instructions: M. Wear DS - Drum Soulds X - Other Special Instructions: M. Wear DS - Drum Soulds X - Other Special Instructions: M. Wear DS - Drum Soulds X - Other Special Instructions: M. Wear DS - Drum Soulds X - Other Special Instructions: M. Wear DS - Drum Soulds Y - Other National Info Info Info Info Info Info Info Info | | 0 | | _ | 1 | - | | | | | | NOTES: | | W-Wester DS-Drum Solides X Control Special Instructions: A. Air F. Fish Windlighted by Received by Date Time COC Record Was: 1 Present on Sample NOTES: Y Coc Record Was: 1 Present on Sample NOTES: Y Coc Record Was: 1 Present Up. 2016 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | | - | 4 | | 1 | - | | | | 5 Received Within | | W. Waser DS - Drum Solides X - Other Special Instructions: W. Waser DS Sp | | | | - | - | | | + | | | T | Holding Times | | Weater DB: Drum Soulds X: Other Special Instructions: W. Water DB: Drum Soulds X: Other Special Instructions: A. Air F. Flah W. Wips L: EP/TCLP Leachate A. Air F. Flah W. Wips L: EP/TCLP Leachate A. Air F. Flah W. Wips L: EP/TCLP Leachate A. Air F. Flah W. Wips L: EP/TCLP Leachate A. Air F. Flah W. Wips L: EP/TCLP Leachate A. Air F. Flah W. Wips L: EP/TCLP Leachate A. Air F. Flah W. Wips L: EP/TCLP Leachate A. Air F. Flah W. Wips L: EP/TCLP Leachate A. Air F. Flah W. Wips L: EP/TCLP Leachate A. Air F. Flah W. Wips L: EP/TCLP Leachate A. Unbroken on Sample Sampl | | | | - | <u> </u> | | | + | | | T | | | W-Wester DS - Drum Soulds X - Other Special Instructions: W-Wester DS - Drum Soulds X - Other Special Instructions: A - Air F - Fielth W1-Wips L - EP/TCLP Leachests A - Big Douglabed by Received by Date Time Item/Reeson Relinquished by Received by Of Sample of Sample of Sample of Sample of Sample Labels and 8999. | | | | | | | | _ | | | | | | W. Water DS - Drum solids X - Other Special Instructions: O-Oil DL - Drum Lquids A - Air F - Fish W1 - Wips L - EPT/CLP Leacheste And Air F - Fish W1 - Wips L - EPT/CLP Leacheste And Belinauished by Received by Date Time Item/Resson Relinauished by Received by Date Time Item/Resson Of Sample (*) O-Oil DL - Drum Lquids A - Air F - Fish W1 - Wips L - EPT/CLP Leacheste And Belinauished by Received by Date Time Item/Resson Relinauished by Received by Office of Sample (*) O-Oil DL - Drum Lquids A - Air F - Fish W1 - | | | | | _ | | | | | | 3 -
 | OC Tape Was: | | W. Water DS. Drum Solids A. Air F. Flath Will William Louids William Louids A. Air F. Flath William Louids A. Unbroken on Sample NOTES: Y. A. Unbroken on Sample | e e | | | _ | | | | | | | | Package 🥙 | | W - Weier DB - Drum Solids X - Other Special Instructions: O - Ou DL - Brum Liquids A - Air F - Flah W - Wrips L - EP/TCLP Leachate W - Weier DB - Drum Solids Special Instructions: A - Air F - Flah W - Wips L - EP/TCLP Leachate W - Weier DB - Date Time Item/Reason Reinauished by Received by Date Time Item/Reason V - Other Date Time Item/Reason Of Sample V - Other Date Time Item/Reason Of Sample V - Other Date Item Sample Condition | | | | | | | | 1 | | | | Unbroken on Outer
Package (Y) | | The Coc Record Was: Was | ŧ | 1. | X - Other | Specie | I Instruct | ons: | 1 | - | | | 7 | Unbroken on Sample V Unbroken on Sample IOTES: | | COC Record Was: 1 Present Uppa Received by Coc Record Was: 1 Present Uppa Received by Coc Record Was: 2 COC Record Was: 2 COC Record Was: 3 COC Record Was: 4 Present Uppa Received by Coc Record Was: 5 COC Record Was: 5 COC Record Was: 6 COC Record Was: 6 COC Record Was: 7 Present Uppa Received by Coc Record Was: 8 COC Record Was: 8 COC Record Was: 9 | | | }
8 | ŀ | | | | | | | | | | Implef Y
Indies Between
Labels and 9999 | TO CO | +- | California L | 18 | \$ 12
2 | MVResson | Relina | shed by | Received by | \vdash | $\stackrel{\circ}{\vdash}$ | 4 . | | Labeis and 06 | | | - | + | + | | | | | | | | | <i>-</i> | | | | | | | - | | | | 5 8 6 | Labels and 06 | | | | | | | | | | | | | ŽŽ | > | | | | | | - | | | , | | | <u> </u> | T | | (09/21/90) EG&G ER Department Rocky Flats Plant ## ER DEPARTMENT DATA ASSESSMENT SUMMARY REPORT FORM | Bate | ch No. 9006L596 | | Site <u>A</u> | rea 6 - Solar I | Ponds | | |------|--|------------------|--------------------|---------------------|---------------------|---| | Lab | oratory Roy F. Weston - Lionville | | No. of | Samples/Ma | trix <u>2/Water</u> | | | SO | N # <u>7/87</u> | | Review | ver Org. <u>Tec</u> | hLaw, Inc. | | | San | ple Numbers <u>SW095W053090AA</u> | A (total and se | oluble) | | | | | | | Data Assess | ment Summa | ıry | | | | | | ICP | AA | Hg | CN | Comments | | 1. | Holding Times | _ <u>v</u> | _ v | <u>v</u> | v | | | 2. | Calibrations | <u>v</u> | v | <u>v</u> | <u></u> | · · · | | 3. | Blanks | A | _A | v | <u>v</u> | Action Items 1-3 | | 4. | ICP Interference Check Sample | <u>v</u> | N/A | N/A | N/A | · · · · · · · · · · · · · · · · · · · | | 5. | Lab Control Sample Results | A | _v | v | | Action Item 8 | | 6. | Duplicate Sample Results | A | <u>A</u> | v | | Action Item 6 | | 7. | Matrix Spike Sample Results | _A | _A | <u>v</u> | v | Action Items 4-5 | | 8. | Method of Standard Addition | N/A | | N/A | N/A | | | 9. | Serial Dilution | <u>A</u> | N/A | N/A | N/A | Action Item 7 | | 10. | Sample Verification | <u>v</u> | <u> </u> | | <u>v</u> | Comment 1 | | 11. | Other QC | <u>v</u> | | | | | | 12. | Overall Assessment | _A | A | | V | Data valid, or acceptable with qualifications | | | V = Data had no problems. A = Data acceptable but qualified due to problems. R = Data rejected. X = Problems, but do not affect data. | | | | N/A = Not appli | cable. | | Dat | a Quality: Data contained in this batch v | vere reviewed an | d found to be va | lid, or acceptable | e with qualificat | ions. Acceptable, | | qual | ified data may be used provided that individ | ual values impac | ted by the "Action | on Items" listed l | oelow are appro | priately flagged. | | Ref | er to attached Results Summary Tables). | | | | _ | | | Action Items: 1) All Chromium, Copper, Manganese, Va | nadium, and Nickel values are estimated and | |---|--| | undetected (UI) because analyte values >IDL were found in the | ne blanks. | | 2) The Cobalt, Zinc, and Selenium values for SW095W0 | 53090AA (soluble) are estimated and undetected (UI) | | because analyte values >IDL were found in the blanks. | | | 3) All Lithium values are estimated (J) because the pre-d | igestion matrix spike recovery criteria were not met. | | 4) All Arsenic non-detects are estimated and undetected | (UI) because the post-digestion matrix spike recovery | | criteria were not met. | | | 5) All Thallium and Silver non-detects are estimated and | undetected (UI) because the pre-digestion matrix | | spike recovery criteria were not met. | | | 6) The Zinc and Selenium values for SW095W053090A | AA (total) are estimated (J) because the duplicate | | precision criteria were not met. | | | 7) All Magnesium values are estimated (J) because the IC | CP serial dilution recovery criteria were not met. | | 8) All Strontium values are estimated (J) because the lab | oratory control sample recovery criteria were not met. | | | | | | | | Comments: 1) The Cesium IDL was greater than the CRD | L. | | | | | | | | | | | Note: Data Summary Tables are attached. | | | Reliant 1. Thio. | 9/26/90 | | Reviewer Signature | Date | 006L596A/eg25j ## ANALYSIS DATES for 9006L596 BATCH NO. | Γ | ္ဆေ | | | | <u> </u> | Γ | Γ | | | | | | | <u> </u> | | Γ | Γ | |-------------|-----------|------|-------------------------|------------------------------------|----------|---|---|--|--|---|--|--|--|----------|---|---|---| | ర | Analysi | Date | 07/22/90 | 02/22/90 | | | | | | | | | | | | | | | | Analysis | | 06/90/90 | | | | | | | | | | | | - | | | | HGCVAA | Analysis | Date | 06/19/90 | 06/18/90 | | | | | | | | | | | | | | | ₩F | Analysis | Date | 07/23/90 | 02/23/90 | | | | | | | | | | | | | | | Se AA | Analysis | Date | 07/16/90 | 06/91/20 | | | | | | | | | | | | | | | Pb AA | Analysis | | 02/16/90 | 06/91//20 | | | | | | - | | | | | | | | | As AA | Analysis | | 07/16/90 | 05/16/90 | | | | | | | | | | | | | | | * See below | Analysis | | | | | | | | | | | | | | | | | | 9
2
3 | Analysis | Date | 07/18/90 | 02/18/90 | | | | | | | | | | | | | | | | SAMPLE ID | | SW095W053090AAA (total) | SW095W053090AAA (soluble) 07/18/90 | | | | | | | | | | | | | | ^{*} The following ICP elements were run on an atternate date: ## CLP WATER INORGANIC ANALYSIS TABLE #: 9006L596 SITE NAME: Area 6 - Solar Ponds ANALYTICAL RESULTS (ug/L) Page 1 of 1 | Statistic Number N | Sample Location | 8 | | | | | | | | | |--|-----------------|-----|--------|-----------------|-----------------|---|---|---|---|--| | HAS TO THE TO THE THE THE TO THE | Sample Numb | Þ | Ī | SW095W053090AAA | SWDR5WD53090AAA | | | | | | | Num AI 200 Num AI 200 Num AI 200 Num AI 200 Num Cd 50 10 Num Num Sec 5 11 Num Num Num Sec 5 11 Num Num Sec 5 11 Num Num Sec 6 Sec 6 11 Num Num Sec 6 11 Num Num Sec 6 11 Num Num Sec 6 11 Num Sec 7 10 Num Sec 7 10 Num Sec 7 10 Num Sec 7 10 Num Sec 7 11 Num Num Sec 7 11 Num Num Sec 8 11 Num Num Sec 9 Num Sec 9 11 Num | Sample Date | | Ī | 05/30/90 | 05/30/90 | | | | | | | The second of th | Remarks | | | total | soluble | | | | | | | wayL DQ vum AI 200 228 V 686 xyy Sb 60 34.8 V 22.0 U c As 10 2.0 UU A 2.0 UU c As 10 2.0 UU V 1.0 U m Bs 20 133 V 1.0 U m Cs 100 2.0 UU V 1.0 U m Cs 1000 241000 V 2.0 UU m Cs 1000 2500 U V 2.0 UU m Cs 1000 2.2 UU V 2.0 UU m Cs 1000 V 4.0 UU V 2.0 UU m Cs 100 2.2 UU V 4.0 UU V m Cs 100 U V 2.0 UU V 3.0 UU m Ss 500 6.0 UU V 2.2 UU m | Inorganic | | Γ | | | | | | | | | vm AI 200 228 V 89.6 rmy Sb 60 34.6 V 22.0 U c As 10 2.0 UU A 2.0 U m Ba 200 133 V 136 m Ba 200 133 V 136 m Ba 200 133 V 136 m Ba 200 133 V 130 m Ca 500 241000 V 130 m Ca 500 241000 V 220 m Ca 500 2400 V 2200 m Ca 100 V 2200 V 300 m Ca 400 V 440 A 220 m Ca 100 V 220 V 300 m Ca 100 V 300 V 300 <td>Analyte</td> <td></td> <td>뒿</td> <td>g</td> <td>8</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> | Analyte | | 뒿 | g | 8 | | - | | | | | Name | Aluminum | - 1 | | | | | | | | | | Ba 200 133 V 136 | Antimony | - | | | | | | | | | | Image Ba 200 133 V 136 Image 5 1.0 U V 1.0 U Image Ca 5 3.0 U V 3.0 U Image Ca 5 3.0 U V 2.2 UU Image Ca 500 2.1 UU V 2.2 UU Image Ca 500 2.0 UU V 4.0 UU V 2.2 UU Image Ca 50 4.0 UU V 4.0 UU V 4.0 UU V Image Ca 50 4.0 UU V 4.0 UU V 4.0 UU V Image 500 270 UU A 28.0 UU A 28.0 UU A Image 500 53100 UU A 1.00 UU A 2.2 UU A Image 500 53100 UU A 2.2 UU A 2.2 UU A Image 500 53100 UU A 2.2 UU <th< td=""><td>Arsenic</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<> | Arsenic | | | | | | | | | | | Inm Be 5 1.0 U V 1.0 U Inm Cd 5 3.0 U V 3.0 U In Ca 5000 241000 V 248000 In Ca 5000 241000 V 248000 In Ca 500 4.0 U V 22 Uu Co 50 4.0 U V 4.3 Uu Cu 25 10.2 Uu V 4.4 Uu Fe 100 210 V 4.4 Uu Pb 5 3.6 Uu V 4.4 Uu Pb 5 3.6 Uu V 4.4 Uu Ium Mg 5000 83100 J V 44.0 Uu Ium Mg 5000 83100 J V 100 U V Ium K 6000 9.2 Uu V 100 U V Ium K 6000 9.2 Uu V 100 U V Ium | Barium | | | | | | | | | | | Image: Color of the c | Beryllium | Ве | | > | | | | | | | | Cs 1000 245000 V 245000 Um Cs 1000 2550 U V 2550 U Cs 1000 2550 U V 2550 U Co 10 2.2 UJ A 2.2 UJ Co 20 4.0 U V 4.3 UJ Co 20 210 V 4.4 0 U Co 20 210 V 4.4 0 U Co 210 V 2.2 UJ Co 210 V 2.2 UJ Co 2.2 U UJ V 2.2 UJ Co 2.2 UJ Co 2.2 U V 2.2 UJ Co | Cadmium | P). | | > | | | | | | | | Um Cs 1000 2500 U V 2500 U Um Cr 10 22 UJ A 22 UJ Co 50 4.0 U V 4.3 UJ Cu 25 10.2 UJ V 4.3 UJ Fe 100 210 V 44.0 U Pb 5 3.6 U V 3.0 U Pb 5 3.6 U V 3.0 U Im Pb 5 3.6 U V 3.0 U Im Mg 5000 63100 J V 15.8 UJ V Im Mg 500 632 U V 15.8 UJ V 15.8 UJ Im K 500 53200 V 15.8 UJ V 10.0 U Im K 500 53200 V 52.7 UJ V Im K 500 53200 V 52.0 UJ V Im K 500 13.3 J A </td <td>Celcium</td> <td></td> <td></td> <td>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | Celcium | | | > | | | | | | | | Co SO 4.0 U V 4.3 UU Co SO 4.0 U V 4.3 UU Co SO 4.0 U V 4.3 UU Co SO 3.0 C V 3.0 U V 3.0 U Co SO 3.0 C V 3.0 U Co SO 3.0 C V 3.0 U Co Co SO 3.0 U V V 3.0 U V V 3.0 U V V V V V V V V V | Cesium | | | > | | | | | | | | Cu 25 10.2 UJ A 10.2 UJ Fe 100 210 V 44.0 U Pb 5 3.6 | Chromium | | | < | | | | | | | | Cu 25 10.2 UJ A 10.2 UJ Fe 100 210 V 44.0 U Pb 5 3.6 V 3.0 U U 100 278 J A 283 J Um Mg 5000 83100 J A 283 J Mm K 5000 120 U V 100 U Mm K 5000 33200 V 55200 V Mm K 5000 33200 V 55200 V Mm K 5000 33200 V 55200 V Mm K 5000 120 U V 100 U V Mm K 500 120 U V 100 U V Mm K 500 120 U V 100 U V Mm K 500 120 U V 100 U V Mm V 50 8.6 UJ A 7.2 UJ A 27.4 UJ Mm V 50 8.6 UJ A 7.2 UJ A 27.4 UJ Mm V 50 8.6 UJ A 7.2 UJ A 27.4 UJ Mm V 50 8.6 UJ A 7.2 UJ A 27.4 UJ Mm V 50 8.6 UJ A 7.2 UJ A 27.4 UJ Mm V 50 8.6 UJ V 100 U V 100 U V MM FT 10 10.0 U V 100 U V MM FT 10 10.0 U V 100 U V MM V 50 8.6 UJ V MFT | Cobalt | | | > | | | | | | | | Fe 100 210 V 44.0 U 44.0 U Pb 5 3.6 | Copper | | | ∢ | | | | | | | | Pb 5 36 - V 3.0 U U 100 278 J A 283 J Num Mg 5000 83100 J A 683 J Nee Mn 15 16.9 UJ A 15.9 UJ No 200 100 U V 100 U Mn 40 8.6 UJ A 100 U Mn 500 53200 V 50.4 UJ Mn 56 5 13.8 J A 20.4 UJ Mn 56 5 13.8 J A 20.4 UJ Mn 56 5 13.8 J A 27 UJ Mn 500 336000 V 348000 V Mn 500 1335 J A 1880 J V Mn 500 190 U V 100 U V Mn 7 20 116 J A 100 U V Mn 7 100 U V 100 | Iron | | | > | | | _ | | | | | Mum Mg 5000 63100 J A 283 J Mm 15 16.9 UJ A 15.8 UJ Mm 15 16.9 UJ A 15.8 UJ Mm 15 16.9 UJ A 15.8 UJ Mm 200 100 U V 100 U Mm 200 100 U V 100 U Mm 56 5 13.8 J A 27 UJ Mm 5000 35200 V 3500 Mm 5000 339000 V 349000 Mm 500 339000 V 349000 Mm 500 339000 V 349000 Mm 50 36 UJ A 40 UJ Mm 50 36 UJ A 40 UJ Mm 72 UJ A 72 UJ Mm 70 UJ 72 UJ Mm 70 UJ 70 UJ MMR | Lead | | | ٧ | | | | 1 | | | | Num Mg 5000 63100 J A 65000 J Mee Mn 15 16.9 UJ A 15.8 UJ Mum Mo 20.2 0.2 U V 0.2 U Mum Mo 200 100 U V 100 U Mum K 5000 53200 V 520 U Mm K 5000 53200 V 527 UJ Ma 500 53211 V 5220 Ma 500 339000 V 527 UJ Ma 500 339000 V 349000 Ma 500 1935 J A 1969 J Ma 50 1935 J A 1969 J Ma 50 100 U V 100 U Ma 50 116 J A 72 UJ Ma 50 116 J A 72 UJ Ma 7 70 UJ A Ma 7 116 J A </td <td>Lithium</td> <td>1</td> <td></td> <td>∢</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | Lithium | 1 | | ∢ | | | | | | | | Hg | Magnesium | 1 | | ∢ | | | | | | | | Hg 0.2 0.2 U V 0.2 U MMO 200 100 U V 100 U MI 40 8.8 UJ A 20.4 UJ MI 56 5 13.8 J A 2.7 UJ SI 5211 V 5280 Ma 5000 335000 V 348000 Ma 5000 335000 V 348000 Ma 5000 1935 J A 100 UJ MI V 50 8.6 UJ A 7.2 UJ TI 10 100 U V 100 U V TO 100 U V 100 U V TO 100 U V 100 U V MR | Manganese | | | ∢ | | | | | | | | Anum Mo 200 100 U V 100 U Im Ni 40 9.6 UJ A 20.4 UJ Im Se 5 13.8 J A 55200 Im Se 5 13.8 J A 2.7 UJ SI se 5 13.8 J A 2.7 UJ Na 5000 336000 V 346000 Na 500 1935 J A 1889 J IT 10 4.0 UJ A 4.0 UJ IT 10 4.0 UJ A 4.0 UJ IN V 50 8.6 UJ A 7.2 UJ IN V 50 8.6 UJ A 7.2 UJ IN 2n 20 116 J V NRR | Mercury | | | > | | | | | | | | Mi K 8000 53200 V 53200 M Se 5 13.8 J A 27.UJ SI 5211 V 5223 Ag 10 3.0 LU A 3.0 LU Na 5000 339000 V 349000 Na 5000 1835 J A 1898 J T1 10 4.0 LU A 4.0 LU Sn 200 100 U V 100 U N V 50 8.6 LU A 7.2 LU 10 10 10 U V 100 U N H | Molybdenum | 1 | | > | | | | | | | | In K 5000 53200 V 55200 In Se 5 13.8 J A 27 UJ SI 3211 V 529 Ag 10 3.0 UJ A 3.0 UJ Na 5000 335000 V 346000 n Sr 200 1935 J A 1969 J n V 50 100 U V 100 U n V 50 8.6 UJ A 7.2 UJ n 2n 20 116 J A 7.2 UJ 10 10 100 U V 17.0 UJ | Lickel | - (| - 1 | ∢ | | | | | | | | Se | otassium | ĺ | | > | | | | | | | | SI 5211 V 5263 Ag 10 3.0 LU A 3.0 LU Na 5000 339000 V 349000 TT 10 4.0 LU A 4.0 LU Sn 200 100 U V 100 U n V 50 6.6 LU A 57.2 LU T0 10.0 U V NFR | Selenium | | | ٧ | | | | | | | | Ag 10 3.0 LW A 3.0 LW n Sr 200 339000 V 349000 r Sr 200 1935 J A 1996 J r Tr 10 4.0 LW A 4.0 LW r Sn 200 100 U V 100 U r Zn 20 116 J A 57.4 LW 10 10.0 U V NFR | Silkon | īō. | SS. | > | | | | | | | | Na 5000 339000 V 349000 T1 10 4,0 UJ A 4,0 UJ Sn 200 100 U V 100 U N V 50 8,6 UJ A 57,2 UJ Zn 20 116 J A 57,4 UJ 10,0 U V N/F | Silver | 1 | 7 | ¥ | | | | | | | | A 1989 A 1989 A 1989 J T 1 10 4.0 UJ A 4.0 UJ A 4.0 UJ A 100 U | Sodium | | | > | | | | 1 | | | | T1 10 4.0 UJ A 4.0 UJ Sn 200 100 U 100 U n V 50 8.6 UJ A 7.2 UJ Zn 20 116 J A 57.4 UJ 10.0 U V N/R | Strontium | - [| | V | | 1 | | 1 | | | | Sn 200 100 U 100 U
n V 50 8.6 UJ A 7.2 UJ
Zn 20 116 J A 57.4 UJ
10.0 U V N/F | Phallium | - | | ٧ | | | | | | | | n V 50 8.eUJ A 7.2 UJ
Zn 20 116.J A 57.4 UJ
10 10.0 U NFR | E) | 1 | | ^ | | | | 1 | | | | Zn 20 (16.) A 57.4 UJ
10 (0.0 U N/F | /anadlum | 1 | T | 4 | | | | | | | | 10.01 V N/H | 36 | | \neg | ٧ | | | | 1 | 1 | | | | yanide | ţ. | | > | | 1 | 1 | | | | DQ Deta Qualifier V Valid A Acceptable with qualifications R Rejected 008L596M/eg25j E Estimated by the Laboratory U Indicates the compound was not detected above the Instrument Quantitation Limit J Quantitation is approximate due to limitations identified during the quality control review DL Detection Limit in Micrograms per Liter (ug/L) N/R Not reported | WESTON Analytics | Samples Were: 1 Enigose or Hand- Delivered NOTES: | 2 Ambient occhilled NOTES: 3 Received Broken/ Leaking (Improperly Sealed) | NOTES:
SEESIDE
4 Properly Preserved
NOTES: | 5 Received Within Holding Times NOTES: | COC Tape Was: 1 Present on Outer Package Package Package Package Package Package V 4 Unbroken on Sample V V NOTES: | COC Record Was: 1 Present Upda Receipt of Samples Y N Discrepancies Between Sample Labels and COC Record? Y N NOTES: | |------------------|---|--|---|--|--|--| | Custod | 1190 Date Due 7140/90 Preservative Nove | MA Use Only Client ID/Description Matrix Date CO SWO95 W 053090 AAA CO SW095 AAAA AAAAA CO SW095 W 05 | Death CO | | Metrix: W-Water DS-Drum Solids X-Other Special Instructions: S-Soli O-Oil DL-Drum Liquids SE-Sediment A-Air F-Flah SO-Solid Wi-Wipe L-EPITCLP Leachese | Item/Reason Retinguished by Received by Date Time Part Par |